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Abstract 

We investigate the problem of selecting the best population from exponential family 
distributions based on type-I censored data. A Bayes rule is derived and a monotone 
property of the Bayes selection rule is obtained. Following that property, we propose an 
early selection rule. Through this early selection rule, one can terminate the experiment 
on a few populations early and possibly make the final decision before the censoring 
time. An example is provided in the final part to illustrate the use of the early selection 
rule for Weibull populations. 
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§ 1 Introduction 

Consider designing and analyzing an experiment for comparing k populations 7Ti, 
7T2, • • •, 7Tfc. Suppose that m items are taken from each population and observations can 
be obtained from those items in time order, as for example, in a life-testing experi- 
ment. It is often desirable to terminate the test from a population as soon as there is 
enough statistical evidence that it is not the best population, and then this population 
is eliminated from further consideration. 

Assume that the random observations from population 7Tj have a density function 
f(x\9i) of the form 

f{x\0) = c(9)exp{ß{9)Q(x)}h(x), xtX, (1.1) 

where X is the support of f{x\6) and h(x) > 0 for x e X. Let £1 be the parameter space 
for each 9{. 

Let #m < 0[2] < • • • < 0[k] denote the ordered values of the parameters #i, 92, • • ■, 9 f.. 
It is assumed that the exact pairing between the ordered and the unordered parameters 
is unknown. The population associated with the largest value 6[k\ is considered as the 
best population. The readers are referred to Gupta and Panchapakesan (1979) for a 
comprehensive understanding of selection and ranking procedures. 

The function f(x\9) is assumed to have (nondecreasing) monotone likelihood ratio 
with respect to x. This assumption is equivalent to 

OW - ß(0i))(QM - Q(*i)) > o (1.2) 

for any 92 > #i, 9X,92 E ft, x2 > rci, 3:1,0:2 € X. Without loss of generality, we assume 
that Q(x) is a nondecreasing function of re and ß{9) is a nondecreasing function of 9. 

Many exponential family distributions, such as Chi-square, Exponential, Gamma (a, 
ß) with one of the two parameters known, Log-normal (//, a2) with a known, Weibull(^, 
ß) with one of the two parameters known, have property (1.2). So our results here can 
be applied to them. 

In an application situation of industrial life-testing experiment, m items from each 
of the k population 7Ti, • • • ,7^ are independently put on test at the outset and are not 
replaced on failure. Due to the time restriction, the experiment terminates at a pre- 
specified time T. The failure time of an item is observable only if it fails before time 
T. Otherwise the item is said to be censored at time T. This type of time censoring is 
known as the type-I censoring. The type-I censoring scheme has received much attention 
in the statistical literature, see Spurrier and Wei (1980), and others. The ranking and 
selection procedures based on censored data for the exponential distribution have been 
considered, for example, in Berger and Kim (1985), Gupta and Liang (1993), and Huang 
and Huang (1980). 

In this paper, we derive a Bayes selection rule for exponential family distributions 
based on type-I censored data.   A monotone property of this rule is discussed and an 



early selection rule is proposed. Through this early selection rule, one can terminate the 
experiment on a few populations early and possibly make the final decision before the 
given time T. The approach used here is similar to that of Gupta and Liang(1993). 

§2 A Bayes Selection Rule 

Let T be the censoring time. Let Xij, 1 < j < m be the type-I censored data of the 
m items taken from population 7Tj. We only observe min(Xij,T). Let JVj = ]T)jLi /[Xy<r] 
be the number of uncensored data up to time T. 

Let Yn < Yi2 < ■ ■ ■ < YiNi be the ordered values of the Ni observed data given Nt. 
Then (Yn, Yi2, • • •, YiNi,N{) have a joint probability density 

f(vi,m\0i) = -^-—^(e^^^^p^x > Tf"J fi Kw)      (2-i) 
\m    rii). j=1 

= m!      cn<(g<)e
/?(g<)ty--(m-w-)0(r)1P(?i(X > T){m-ni) fj %ij), 

[m — rii). j=1 

where y{ = (yn, yi2, •■•, yin), 0 < n < m, yn < yi2 < • • • < yin < T and 

Vi = E Q(yy) + (m - nOQCO. (2.2) 
j=i 

  Let M be the sample space generated by N — (rii,n2, • • •, nk) and conditioned on 
N = n = (ni,n2, ■ ■ ■, nk), let yn be the sample space generated by Y = (yi, y2, • • •, yk). 

Let 0 = (#i, 92, ■ ■ •, 6k) and Q = {#|#; e Q.,1 < i < k} be the parameter space. Let A 
be the action space. Action i corresponds to the selection of population 7Tj as the best 
population. For a given 6 G tt and an action i, the associated loss function is defined by 

L*(9,i) = L(e[k]~0i) (2.3) 

where L(x) is a nonnegative and nondecreasing function of x, x > 0, such that L(0) = 0. 
Let giß) = ITj=i 9j(6j) be the prior density over the parameter space Q. It is assumed 

thai, faL(e[k])g(e)M<oo.    - 
A selection rule S = (Si, S2, • ■ •, 8k) is defined to be a measurable mapping from the 

sample space (A/", (3^)^/0 ^° [0> ^\k such that 0 < &i(Vi rä) < 1 and Z)*=1 £i(y, n) — 1 for 
all y G ^Vn, n G A/*. The value of 5j(y, n) is the probability of selecting population 7T; as 
the best population based on the observation (y, n). 

Let R(S,g) denote the Bayes risk associated with the selection rule 5. Then by 
Fubini's Theorem we have 

k 

R(l 9) = E /   E *(y>") / L(0M ~ W(£ n\G)g(9)d0dy (2.4) 



where f(y,n\9) = Ui=i tiVh^i)- Now let 

f k 

fiiVi, rii) = / f(yh ni|öi)5i(öi)rfö,-,     f(y, n) = J] fi(y» «i). 

^t(^i|yi,Wi) = ' r     and    g{e\y,n) = {[gi{ei\yhni). 
Ji{yiini) i=\ 

Then (2.4) becomes 

it 

Ä(£p) = E /   EW>n) LL{e{k]-ei)g{9%n)def{y,n)dy. 

For each (y, n), define 

Ai(j/, n) = I L(9[k] - Oi)g{e\y, n)d9,   i = 1,2, • • •, k, (2.5) 
•'at 

and let 

A(y,n) = {i\Ai{y,n) = min Aj(y,n)}. (2.6) 
i<j<fc 

Then a uniformly randomized Bayes rule is 5G — (SQI, • • •, Sak), where 

= f \A(y,n)\-1   if    xeA{ 
Gl      |  0 otherwise. 

Sm = i   l^'^l   *    lf     i€j4(^'^) (2.7) 

§3 A Monotonicity Property of Sg 

For each fixed (y^rii), ft(0.-|yi,ni) = 0 if and only if #(0*) = 0. Then g^y^rn) and 
g{9i\yi,ni) have the common support. Let D{ be their common support. Consider the 
likelihood ratio defined on D;, by 

ri{0i\Vi, rii, yu rii) = ■ (3.1) 
9i{vi\yi,ni) 

A simple calculation shows that for some nonnegative function W 

ri(0i\yi,n*,yi,ni) 

W(y;X,yi>Wi)cn'r_ni(0>)eWÄ^ 
/*oo 

W{ylnlyuni)eP^^^{JT   exp{ß{Bi)[Q{x) - Q(T)}}h(x)dx}^-n'\ 



from which we get the following lemma. 

Lemma 3.1 Let ri(9i\y*,n*,yi,ni) be defined by (3.1). Then 

(a) forn* = nhy* > yt, r^^y^n^y^ni) is a nondecreasing function of9{ in D{ and 

(b) fory* = yi,n* > n{, ri(9i\y*,n*,yhni) is a nonincreasing function of 9t in D{. 

The following lemma is used in the proof of lemma 3.3. 

Lemma 3.2 If g(9) and h(9) are probability density functions such that g(9)/h(8) is 
nondecreasing function of 9 in 9,, then for any nonincreasing function f(9) of 9 in Q, 

f f(9)h(9)d9 > ( f(9)g(9)d9. 

Lemma 3.3 Let A?(y,n) be defined in (2.5). For each i(l < i < k), A;(y,n) is 
nonincreasing in y{ and also in rij,j ^ i when all the other variables are kept fixed, and 
nondecreasing in ni and also in yj:j ^ i, when all the other variables are kept fixed. 

Proof. We only prove that Aj(y, n) is nonincreasing in y^ when all the other variables 
are kept fixed. The other parts can be proved in a similar way. 

Define 

&   =   {0i,--A-iA+u---,Ok) 
ft   =   {9i:9jE^j = l,2r--,k,j^i} 

y  =  (yi,---,j/*) 

y*  =  (j/i,---,3/i-i.y,f>yi+i>-••>!/*)■ 

Then 
Ai(f/,n) = L[f L(6[k]-9i)gi(9i\yi,ni))d9il[gj{9j\yj,nj)d9i. 

Since for each fixed 9l and n, L(9[k] - 9{) is nonincreasing in 9t and by Lemma 3.1, 
ri(Oi\yi,n*,yi,rii) is a nondecreasing function of 0j for y* > y{. So Lemma 3.2 implies 
that 

J L(9[k] - 0i)gi(9i\yhni)d9i > J^m ~ 0«)&(W>^)^ 

and hence Aj(y, n) > Aj(y*,n). 

Now, from Lemma 3.3, we obtain a monotone property for So in the following theo- 
rem. 

Theorem 3.4 For each i = 1,2, ••-,&, öci{y,n) is nondecreasing in yt and nonin- 
creasing in nit when all the other variables are kept fixed. 



Proof. We only prove that Sci(y, n) is nondecreasing in y{ when all other variables 
are kept fixed. The monotone property of 5G in n* can be proved in a similar way. 

Use the notation in Lemma 3.3. Assume y* > y;. 
If i $L A(y,n), then 5oi{y,n) = 0. Since ÖGi(y*,n) is nonnegative, SGi(y*,n) > 

ÖGi(y,n). 

If i G A(y, n), then Aj(y, n) < min^i Aj(y, n). Using Lemma 3.3, 

A,-(f/*,n) < A,-(y,n) < minA.,(y,n) < mill A.,■(f/^n)• 

And hence i G A(y*,n). 
To get 5ci{y*, n) > Saiy, n), we still need to show 

A(y\n)cA{y,n). (3.2) 

For each h G yl(y*,n), Ah(y*,n) — A2(y*,n). Using Lemma 3.3, 

Ah(y,n) < Ah(y*,n) = A*(y*,n) < At-(y,n) = min Aj(y,n) 
l<j<k 

and hence ft. G .A(y, n). So (3.2) is proved and 5Gi{y*,n) > Sci(y,n). 

§4 An Early Selection Rule 

In this section, we consider the following linear loss function: £(%•] — 9i) = 0[fc] — #,, 
the difference between the parameters of the best and the selected populations. Thus 
the set A(y, n) given by (2.6) turns out to be: 

4(y,n) = 01 / 0i9i(0i\yi,ni)d6i = max J 6jgj{0j\yj,n^dOj}. (4.1) 

Similar to the proof of Lemma 3.3, we can prove the following result. 

Lemma 4.1 For each fixed i, E[6i\yi,rii] is increasing in yi and decreasing in n^. 

Now, we will use Lemma 4.1 to derive an early selection rule. 
At time t, 0 < t < T, let Ni(t) denote the number of uncensored data from population 

Wi upto t. That is, N{(t) = #{X{j : 1 < j < m,Xy < t}. Also, let Yix < Yi2 < ■ ■ ■ < 
YiNi(t) denote observed uncensored data given Nj(t). At time t, we can make early 
decision as follows: 

Declare population 7T; as a non-best population and exclude it from further experiment 
if there exists some population it^ such that 

Nh{t)<m  and  E[6h\yh{t),m\ > E[9i\yi(t,T), N^t)} (4.2a) 

or 
Nh(t)=m   and   E[0h\yh(t),m) > E[9i\yi(t, T), Ni{t)] (4.26) 



where 
Nh(t) 

Vh(t) = £ QiVhj) + (rn- Nh(t))Q(t) (4.3a) 
i=i 

and 
Ni(t) 

Vi(t,T) = £ QiVij) + (m- Ni(t))Q(T). (4.36) 
i=i 

Let S(t) denote the indices of the contending populations for the best at time t. That 
is, 

S(t) = {i : Nh{t) < (=)m  and  £[^(i,T),..iVt-(t)] > (>)^[öÄ|i/A(t),m],/t ^ i}.   (4.4) 

The following lemma shows that for any t, 0 < t < T, S(£) is not empty. 

Lemma 4.2 For any 0 < t < T, the set S(t) defined by (4-4) *s n°t empty. 

Proof. Let 

S'(t) = {i : EieMt^Niit)] = max E[6h\yh(t),Nh(t)]}. 
l</l<K 

Then S'(t) is not empty. We prove that S'(t) is a subset of S(t). For i G S"(£) and any 
h^i, 
it Nh(t) < m, then 

EtfilvifaT^Niit)] > EtfMtlNiit)] > E[eh\yh(t),Nh(t)] > E[eh\yh(t),m}; 

if Nh(t) = ra, then 

i^ly^T), JV^)] > Epily^Niit)] > E[Oh\yh{t),Nh{t)] > E[9h\yh(t),m]- 

In either situation, we see that i € S(t). Hence S'(t) C S(t). 

Now, the experiment terminates as soon as there is a time t, 0 < t < T, such that 
\S(t)\ = 1 and in this case, we select the population with its index in S(t) as the best 
population. Otherwise, the experiment goes on until time T. Let 

S(T) = {i : E[ei\yi,Ni] =   max  E^yj, Nj]}, (4.5) 
j'es(T ) 

where S(T~), which is not empty by Lemma 4.2, denotes the set of the indices of those 
populations having not been eliminated before time T. Then, a uniformly randomized 
selection is made from S(T). 

^From the above description, we see that the early selection rule can possibly make 
a final selection earlier than the termination time T. Denote this early selection rule by 
^h ~ (^GH " '' ^Gk)- Then, we have the following theorem. 
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Theorem 4.3 Under the loss function L(0), SGi = SGi(y,n) for all I < i < k, y € yn 

and nGJV, where 5ai(y, n) is defined by (4-1) and (2.7). 

Let h = inf{t : \S(t)\ = 1,0 < t < T} A T, where a A b = ram(a, 6). Then Theorem 
4.3 is equivalent to the following theorem. 

Theorem 4.4 S(ti) = A(y,n) for all (y,n). 

Proof. Case 1. If tx < T, then \S(ti)\ = 1. Without loss of generality, we let nk be 
the population with index in the set S(ti). Since A(y, n) contains at least one element, it 
suffices to show that % £ A(y,n) for all i ^ k. Since i ^ S(ti), it means that population 
7Tj is eliminated at some prior time, say t0, That is, at time t0, for some 71^, either 

Nh{t0)<m  and  E[6h\yh{t0),m] > E^y^T)^^)} (4.6a) 

or 
Nh(t0)=m  and  E[9h\yh{t0),m]> ^M^T),^^)]. (4.66) 

Now, note that Ni(t) is a nondecreasing function of t G (0, T] and Ni(t) < m. Also, by 
(4.3a) and (4.3b), yh(t) is nondecreasing in t and yi(t,T) is nonincreasing in t. Especially, 
we have 

Nh = Hh(T)<m,  Nt(t) < Ni{T) = Nu  yi(t0,T)>yi 

and 
_ J  > !/h(*o)   if Nh(t0) < ™, 

^ ~\ =y/,(«o)   if Nh(t0)=m. 

Thus, when iV/^o) = rn, then iVÄ = m. Then by Lemma 4.1 and (4.6b), 

E[9h\yh,Nh]   =   E[6h\yh(t0),m] 

> EiOilvitto^Niito)] 

> EfolyuNi]. 

When Nh(t0) < m, then yh > yh(k) and Nh < m, Therefore, by Lemma 4.1 and 
(4.6a), 

E[9h\yh,Nh]   =   E[6h\yh(t0),m] 

> EieMto.T^Niito)] 

> E[0i\yi,Ni]. 

In either situation, we see that i $. A(y,n). 
Case 2. If t\ = T, we need to prove that 
(a) i $. S(T) implies i <£ A(y,n), and (b) i G S(T) implies i e A(y,n). 
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We prove (a) first. Suppose i <£ S(T). Then, TTJ is eliminated at a time t0 < T by 
some other n^. 

If t0 < T, this reduces to the situation discussed in Case 1. 
If t0 = T, then by (4.5), E[9h\yh,Nh] > E^^Ni]. Therefore, by the definition of 

A(y,n), i <£ A(y,n). 
For (b), we have firstly A(y,n) C S(T) C S{T~) by (a) and definition of S{T) and 

S(T-). UieS{T~), 

EfrlyuNi]   =     max  EfofaNj] 
j£S(T  ) 

>     max_ E[6j\yj,Nj]. 
jeA(y,n) 

This means % G A(y, n). The proof now is completed. 

§ 5 An Example 

We use the simulated data to illustrate how the early selection rule works. Suppose 
that we have five populations 7Tj, i = 1, 2, 3, 4, 5. The lifetime of the population ni 
follows a Weibull distribution with density 

f(x\6i) = ^exp[-{j)\ x>0. 

The unknown parameters 9i, ■ ■ •, 65 are simulated independently from U(0,1). That is, 
0i, ••; 05 are independent and identically distributed with 77(0,1). Ten observations 
are simulated independently from each population. The data are listed in the following 
table. 

7Ti 7T2 7T3 7T4 7T5 

0.10 0.06 0.57 0.80 0.67 
0.33 0.09 0.56 1.19 0.90 
0.50 0.05 0.61 0.70 1.02 
0.17 0.04 0.75 0.36 0.64 
0.50 0.02 0.68 0.88 0.74 
0.13 0.02 0.22 0.52 0.90 
0.13 0.07 0.47 0.71 0.94 
0.28 0.10 0.45 0.77 0.86 
0.36 0.07 0.69 0.52 0.59 
0.10 0.07 1.01 0.24 0.90 



We want to select a population with the largest mean lifetime. Since the mean lifetime 
of the population 7TJ is proportional to 0t-, what we need to do is to find a population 
with the parameter fy.]. Suppose that the type-I censoring scheme is planned before the 
life-testing experiment and the censoring time is set to be T = 1. Therefore we obtain 
the following table. 

71"! 7T2 7T3 7T4 7T5 

E[9i\yuni]    0.14    0.03    0.31    0.34   0.83 

According to the selection rule SQ, at the end of the experiment, we select rr5 as the 
best population. 

However, if the early selection rule 6*G is applied, we can make the selection before 
T = 1 and end the experiment earlier. According to the selection rule 6Q, at time t, 
0 < t < T = 1, exclude the population 71-j as a non-best population and remove it from 
further experiment if there exists some population 7T/, such that 

Nh(t)<m  and   E[eh\yh{t),m]> E[et\yi{t,T),Ni{t)) 

or 
Nh(t)=m   and   E[0h\yh(t),m] > E[6i\yi(t,T), Nt{t)]. 

According to this rule, at ti = 0.88, all the populations 7Ti, 7r2, 7r3 and 7r4 are removed 
from the experiment and the population 7r5 is selected as the best. So the experiment 
can be ended at ti = 0.88 and the time saved is 0.12 or 12%. 
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